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Abstract: Satellite observations of the oceans have great potential to improve the quality and
predictive power of numerical ocean models and are frequently used in model skill assessment
as well as data assimilation. In this study we introduce and compare various measures for
the quantitative comparison of satellite images and model output that have not been used
in this context before. We devised a series of test to compare their performance, including
their sensitivity to noise and missing values, which are ubiquitous in satellite images. Our
results show that two of our adapted measures, the Adapted Gray Block distance and the
entropic distance D2, perform better than the commonly used root mean square error and
image correlation.
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1. Introduction

In applications that involve satellite data and numerical modelling, it is desirable to compare the model
output to measured data quantitatively. In this study, we assess the use of algorithms from the field of
computer vision that measure the similarity of two images (henceforth referred to as image comparison
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measures) for model-data comparison. The image comparison measures proposed in this study offer an
unexplored alternative to the measures currently used in model skill assessment and data assimilation.

Model skill assessment relies on similarity measures that quantify the distance of data and model
output (see e.g.,[1, 2] for model skill assessment in oceanographic contexts). As a quick and easy
measure, the root mean square error is frequently used (see e.g., [3]). In variational data assimilation,
a cost function is defined measuring the discrepancy between data and their corresponding model
counterparts [4], usually a root mean square error. In ensemble-based data assimilation, which includes
particle filters, a likelihood function must be defined, specifying the observation or model errors [5].

Satellite data typically come as single-channel (as opposed to multi-channel images, such as RGB
images, which contain 3 channels, one for each red, green and blue color information) digital images,
i.e., numeric values arranged on a grid. Hence we can consider model-data comparison to be the
comparison of two single-channel digital images: one representing the data, the other the model state. We
focus specifically on the comparison of ocean color data to corresponding data derived from numerical
oceanographic models.

In the context of computer vision, a variety of image comparison methods have been developed for
the comparison of regular (single-channel, discrete-valued) gray scale images (see e.g.,[6] and references
therein). Satellite ocean color images exhibit two major differences from regular images: (1) intensity
values are generally not discrete, and (2) satellite images often contain regions of missing values caused
by cloud cover or other atmospheric distortions [7], as well as masked regions due to the presence of land
(islands, coastline). Missing values especially pose a challenge to existing image comparison measures
and here we present suitable adaptations. Although we focus on ocean color, the methods can be readily
applied to other variables such as sea surface temperature and sea surface height. We also broaden the
definition of an image. While regular gray scale images contain discrete values arranged on a complete
grid, we allow non-discrete and missing values. Because of the similarity to regular images, we use the
words image and pixel even though we are not dealing with regular images.

Image comparison measures can be divided roughly into two categories, both are widely used in
different applications [6, 8–10]. One category, high level image comparison, incorporates edge detection
(see [11–13] for oceanographic examples), or other segmentation methods to extract features from
images [14]. The extracted features are then classified or compared in place of the images. Low level
image comparison, the second category, consists of direct comparison of images as a whole. In this study,
we focus on various approaches of low level image comparison and hereafter the term image comparison
refers to this category only.

Some of the simplest low level image comparison methods utilize pixel-by-pixel comparison, i.e.,
only pixels at the same location are compared (e.g., root mean square error and correlation). In the
computer vision literature it is often pointed out that pixel-by-pixel comparison, while having certain
advantages (mainly simplicity and low run-time), often reflects human perception poorly and are too
sensitive to small changes within an image [15]. A small offset of one or multiple objects within an
image can, for example, cause the root mean square error to increase dramatically. For this reason it
is desirable not to restrict the comparison to pixels at the same location, but to include neighborhoods
of pixels.

In this study we compare the performance of 8 image comparison measures after adapting
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them to allow for missing and non-discrete values. Among the tested methods, the root mean
square error and the normalized cross-correlation represent widely used pixel-by-pixel measures
(see e.g., [6, 16]). We demonstrate that these pixel-by-pixel measures have shortcomings in the context
of satellite image comparison. Our results indicate the benefits of alternative, neighborhood-based
methods. The shortcomings of root mean square error and cross-correlation become especially apparent
with respect to missing values in images.

In this study we use ocean color images from the SeaWiFS and MODIS satellites. The raw images
were processed with the algorithm of [7] to produce images that measure the absorption of light due to
the organic constituent colored dissolved organic matter (CDOM) and chlorophyll.

The manuscript is organized as follows. In Section 2. we define our nomenclature. Section 3.
contains descriptions of the 8 image comparison measures we tested. We evaluate the performance
of the image comparison measures in a series of 6 tests in Section 4. The results are summarized in an
overall discussion in Section 5.

2. Nomenclature

2.1. Definition of Symbols

We consider a digital image A as a set of pixels

A = {ai,j}m,ni,j=1 (1)

with values ai,j ∈ [0, g] ∪ {NaN}. The symbol NaN indicates a missing value in a pixel, [0, g] is the
closed interval from 0 to g and ∪ denotes the union symbol for two sets. A is defined on a m× n grid

X = {(i, j)}m,ni,j=1 (2)

so that the pixel ai,j is located at (i, j) ∈ X .
In the following we use A = {ai,j}m,ni,j=1 and B = {bi,j}m,ni,j=1 to denote model and satellite images,

respectively. We assume that both images are defined on the same grid X . Further, we define ANaN

and Areal as the set of all points in X where the pixels of A are NaN (missing value) and not NaN (real
valued) respectively. Together they form a partition of X

ANaN = {(i, j) ∈ X : ai,j = NaN} and Areal = X \ ANaN , (3)

where \ denotes the relative complement of two sets. In the same way, we also define a partition of B:

BNaN = {(i, j) ∈ X : bi,j = NaN} and Breal = X \BNaN . (4)

Missing values in model and data images present a challenge to similarity measures because they
cannot be compared to other values in a meaningful way. Generally, the location of missing values in A
will not correspond to the location of missing values in B, and vice versa, so that ANaN 6= BNaN . This
leads to the formation of 4 subregions on the grid which form a partition of X and need to be treated
differently by the image similarity measures. These subregions are:

• ANaN ∩BNaN ,
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• Areal ∩Breal = Xreal,

• Areal ∩BNaN and

• ANaN ∩Breal,

where ∩ denotes the intersection of two sets.
The region of pixels with missing values in both model and data, ANaN ∩ BNaN , is ignored by all

similarity measures presented here. These pixels therefore should not influence a given similarity
measure’s result. The size of ANaN ∩ BNaN relative to the size of X may, however, affect our confidence
in the similarity measures result. In this study ANaN ∩BNaN consists solely of land pixels.

Pixels within the subregion of X with non-NaN values in both model or data, Xreal = Areal ∩ Breal,
can be treated like those in regular images. Pixel-by-pixel comparison measures, which do not consider
the distance between two pixels at different locations, such as the root mean square error, base their
results solely on this region. Pixels with missing values either in A or B (ANaN ∪BNaN) are not taken into
account by these pixel-by-pixel measures, while other similarity measures presented herein can make
use of them.

Cloud cover and a variety of different distortions can lead to missing values in satellite images.
Additionally, the satellite image may not cover the entire model domain. Pixel locations in Areal ∩BNaN ,
with values in the model but missing values in the data are therefore common for satellite data. They
can become important for those similarity measures that compare the distance between two pixels at
different locations.

Figure 1. Schematic of a satellite taking an image (left panel) and corresponding
subregions on the model grid (right panel). Subregion 1 in the right panel corresponds to
Xreal = Areal ∩Breal, where the view of the ocean is clear. The satellite image does not cover
the entire model domain and clouds as well as other interferences cause missing values in
the data, creating subregion 2 (Areal ∩ BNaN). The model domain includes land, resulting in
subregion 3 (ANaN ∩BNaN).

.

Pixel locations with values in the data but not in the model, in ANaN ∩Breal, are not considered in this
study, as we do not make use of data that extends beyond the model domain. Generally it is possible
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to consider this region e.g., when data from outside the model domain is available. In that case the
neighborhood-based measures introduced here can make use of the additional data. The 3 remaining
regions considered in this study are illustrated in Figure 1.

3. Image Comparison Methods

Most of the image comparison measures that we assess here require modifications to work with
missing values (Table 1). Dealing with missing values in pixel-by-pixel measures is trivial, as pixels
with missing values in A or B can only be ignored by these measures. We consider the widely used root
mean square error and normalized cross-correlation, and, as a less widely used pixel-by-pixel distance
measure, we include an adaptation of the entropic distanceD2 [17] in our tests. The remaining 5 distance
measures presented here are based on the comparison of neighboring pixels and require modifications to
make use of the information in Areal∩BNaN , where only one of the two images have non-missing values.
We altered the image Euclidean distance and Delta-g (∆g) only slightly from their original formulations
while we changed the adapted Hausdorff distance, the averaged distance and the adapted gray block
distance significantly.

3.1. Parametrisations

Most of the 8 image comparison measures we introduce in the following sections feature one or more
parameters. Table 1 lists the parametrisations that we used here and identifies the scale parameters for
the neighborhood-based measures.

In the following, we refer to an image comparison measure (in its original formulation or our
adaptation) by its full name, e.g., “image Euclidean distance” while we use its abbreviation, e.g., “IE”,
to refer to the particular parametrization of the measure that we used in our tests. Table 1 contains a list
of the abbreviations; in case of the adapted Hausdorff distance, we test two different parametrisations,
AHD and AHD2.

The choice of parameters used with the methodologies, including our choice of using the entropic
distance D2 over e.g., D1 (both were introduced by [17]), are based on results we obtained from an
initial set of tests performed for a range of likely parameters, as well as on parameter values suggested
in the original literature.

3.2. Pixel-by-Pixel Measures

As stated in Section 2., all pixel-by-pixel measures listed below simply ignore model pixels that
correspond to data pixels with missing values. They operate only on Xreal, the region where neither A or
B have missing values.

Root Mean Square Error (RMS)

The Root Mean Square (RMS) error is defined as

dRMS (A,B) =

√
1

|Xreal|
∑

(i,j)∈Xreal

(ai,j − bi,j)2. (5)
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Normalized Cross-Correlation (NXC)

The Normalized Cross-Correlation (NXC), applied to images, is a pixel-by-pixel comparison measure
that is closely related to the root mean square error and also widely used. It has the form

dNXC (A,B) = 1−
∑

(i,j)∈Xreal
ai,jbi,j√∑

(i,j)∈Xreal
a2
i,j

∑
(i,j)∈Xreal

b2i,j

. (6)

Entropic Distance D2 (D2)

The Entropic Distance D2 (D2) is one of 6 entropy-based image comparison measures introduced
by [17]. As with RMS, pixels with missing value are ignored by D2. The distance between two images
A and B is then defined as

dD2 (A,B) =
1

|Xreal|
∑

(i,j)∈Xreal

2 hi,j(A,B)

(
1− hi,j(A,B)

2

)
(7)

where hi,j(A,B) =
|ai,j−bi,j |

g
.

3.3. Neighborhood-Based Measures

Neighborhood-based measures utilize a variety of methods that allow for the comparison of
non-neighboring pixels. With the exception of the adapted gray block distance, all of the comparison
measures in this section make use of a direct approach to pixel comparison by defining a measure for
the distance between pixels. A common definition for the distance between two non-NaN pixels ai,j and
bk,l is

d∗(ai,j, bk,l) =

(
|ai,j − bk,l|p

gmax
+
|i− k|p

mmax
+
|j − l|p

nmax

)1/p

, (8)

which measures the distance in space and in intensity. For p = 1, d∗ is called city block distance, for
p = 2, d∗ corresponds to the Euclidean distance and for p→∞ to the maximum distance

d∗max(ai,j, bk,l) = max

(
|ai,j − bk,l|

gmax
,
|i− k|
mmax

,
|j − l|
nmax

)
. (9)

The constants gmax, mmax and nmax in Equations (8) and (9) are scaling parameters. In our
implementations, we set them to gmax = g and mmax = nmax = max(m,n), where g is the maximum
intensity value in the images and m and n are the dimensions of A and B. The pixel distance d∗ is used
in the original formulation of the Hausdorff distance, the averaged distance and Delta-g. To account for
NaN-valued pixels, we extend d∗ in the following sections and discuss it in more detail.

Adapted Hausdorff Distance (AHD, AHD2)

The Hausdorff distance was presented by [18] and has been used in numerous variations [e.g., 22, 23].
We present two adaptations of the Hausdorff distance (AHD, AHD2) based on its original and most
common definition [16, 18]:

dAHD (A,B) = max
i,j

(max (d(ai,j, B), d(bi,j, A))) , (10)
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where d(ai,j, B) is a function defining the distance between a pixel in A and the entire image B (or a
pixel in B and the entire image A for d(bi,j, A)). This distance is commonly defined as

d(ai,j, B) = min
k,l

(d∗NaN (ai,j, bk,l)) and d(bi,j, A) = min
k,l

(d∗NaN (bi,j, ak,l)) (11)

and includes the function d∗NaN which we adapted for use with missing values: In addition to the 2 pixels
ai,j and bk,l, d∗NaN (ai,j, bk,l) is also dependent on bi,j in the following way

d∗NaN (ai,j, bk,l) =


0 if ai,j = NaN or bi,j = NaN

∞ if bk,l = NaN and i 6= k or j 6= l

d∗(ai,j, bk,l) otherwise,

(12)

where d∗ is the distance of two non-NaN pixels defined in equation (8). If bi,j = NaN, this will result
in d∗NaN (ai,j, bk,l) = 0 independent of k and l. This property of d∗NaN ensures that dAHD (A,B) = 0 for
Xreal = ∅. Note that d∗NaN (ai,j, bk,l) 6= d∗NaN (bk,l, ai,j); the symmetry in equation (10) ensures that dAHD

is symmetrical (i.e., dAHD (A,B) = dAHD (B,A)). Furthermore, the adapted Hausdorff distance is equal
to the original Hausdorff distance [18] if there are no missing values in A and B.

The above definition of the adapted Hausdorff distance is sensitive to factors such as noise and missing
values. To decrease this sensitivity, we average over the kmax largest values of max (d(ai,j, B), d(bi,j, A)),
instead of just using the maximum as in equation (10). By defining dmax(k) as the kth largest value of
max (d(ai,j, B), d(bi,j, A)) for all (i, j) ∈ X , we can express the averaging as

d
(kmax)
AHD (A,B) =

1

kmax

kmax∑
k=1

dmax(k), (13)

which is equivalent to the formulation in Equation (10) for kmax = 1, i.e., d(1)
AHD (A,B) = dAHD (A,B).

In our tests we use two parametrizations of the adapted Hausdorff distance which only differ in their
choice of kmax: for AHD kmax = 1, while kmax = 20 for AHD2. The averaging of the largest values
described above has been used in [23] to decrease the sensitivity of the Hausdorff distance to outliers.
Reference [18] explored a similar idea for the Hausdorff distance and portions of regular images.

Averaged Distance (AVG)

The Averaged Distance (AVG) is an image comparison measure introduced by [16]. We modified it
to work with missing values as we have done for the adapted Hausdorff distance. The averaged distance
is defined as the square root of averaged distances of sub-images of A and B:

dAVG (A,B) =

√√√√ 1√
2nreal

m−w∑
i=w

n−w∑
j=w

√(
d(ai,j, Bwi,j

)
)2

+
(
d(bi,j, Awi,j

)
)2
, (14)

where Awi,j
and Bwi,j

are w × w sub-images of A and B, centered on (i, j) ∈ X . The distance d is
defined in equation (11). The normalizing factor nreal < (m−w)(n−w) is the number of summands in
equation (14) for which ai,j 6= NaN and bi,j 6= NaN. It is defined as

nreal = |{(i, j) ∈ X : w ≤ i ≤ m− w, w ≤ j ≤ n− w, ai,j 6= NaN, bi,j 6= NaN}| . (15)
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Delta-g (DG)

The distance measure Delta-g (DG) was introduced by [19] for gray scale image comparison. Due
to its relatively complex definition, we will only give a simplified description of it here and explain the
changes we made to the original formulation. In Delta-g, a gray scale image is viewed as a function
defined on a grid, i.e., A(i, j) = ai,j or (i, j) ∈ X . For each intensity level y, we consider those pixels in
A that have the same intensity level or are above it:

Xy(A) = {(i, j) ∈ X : ai,j ≥ y} . (16)

This serves as a way to define a distance

dIE((i, j) , Xy(A)) = min
(k,l)∈Xy(A)

d((i, j) , (k, l)) (17)

where d((i, j) , (k, l)) is the distance of two points in X , e.g., d((i, j) , (k, l)) =
√

(i− k)2 + (j − l)2.
Equation (17) is the basis of Delta-g and d((i, j) , Xy(A)) is computed for each intensity level y. Here,
Delta-g makes use of the discrete value characteristic of typical gray scale images, as there is only a
finite number of intensity levels in a gray scale image (typically y ∈ {0, 1, 2, . . . , 255}). We emulate this
characteristic by mapping the intensity values of the satellite images from [0, g] to their closest value on
an equidistant grid Y = {0, g

nlev−1
, 2g
nlev−1

, . . . , g}, where nlev is the number of grid points. Equation (17)
is then evaluated at every intensity level y ∈ Y . A higher nlev typically improves the results of Delta-g
but increases runtime significantly. To deal with missing values, we ignore pixels in ANaN ∩ BNaN and
define dIE((i, j) , Xy(A)) =∞ (infinity) if ai,j is NaN.

Image Euclidean Distance (IE)

The Image Euclidean Distance (IE) is an Euclidean distance of two images, that considers the spatial
links between different pixels [20]. While the RMS is the Euclidean distance of two images, assuming
that all (mn) dimensions of A and B are orthogonal, the image Euclidean distance takes into account the
grid structure, on which the pixels are located. We simply ignore missing values in the computation of
the image Euclidean distance and define

dIE (A,B) =
1

|Xreal|

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

d̂(ai,j, bi,j, ak,l, bk,l) (18)

where

d̂(ai,j, bi,j, ak,l, bk,l) =

0 if #NaN {ai,j, bi,j, ak,l, bk,l} > 0

(ai,j − bi,j)gi,j,k,l(ak,l − bk,l) otherwise
(19)

and #NaN denotes the number of missing values in a set. The spatial distance between the pixels is
incorporated into gi,j,k,l which is defined as

gi,j,k,l =
1

2πσ2
exp

(
−(i− j)2 + (k − l)2

2σ2

)
. (20)
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As each pixel in A is compared with each pixel in B the complexity of IE is O((mn)2). This complexity
can be reduced by comparing each pixel to only those pixels that are close to it, as other pixels will add
near-zero terms to the sum in Equation (19). If only those pixels in a w × w window around each pixel
are considered in the comparison, the complexity of IE reduces to that of AVG.

Adapted Gray Block Distance (AGB)

We also adapted the gray block distance, presented by [21] for regular gray scale images, to deal with
missing values and refer to this as Adapted Gray Block Distance (AGB). In this measure the distance of
two images is determined by comparing the mean gray level of successively smaller subdivisions (gray
blocks) of the images.

Calculation of the gray block distance between two images A and B involves dividing A and B into
blocks and comparing their mean intensity levels. This is done for different resolution levels, i.e., the
blocks are successively decreased in size and a comparison is performed at every level. For regular gray
scale images the blocks must cover the image completely at every resolution [21], and the blocks cannot
extend beyond the boundaries of the image. In our adapted gray block distance, dAGB, we weight the
difference between the mean intensity level of two blocks based on the number of missing values they
contain. For two images A and B, the blocks must completely include the region where either A or
B has non-NaN pixels at every resolution. However, A and B may be padded with missing values or
embedded into larger images filled with missing values, effectively allowing blocks to extend beyond the
boundaries of the original image.

To facilitate the division of A and B into successively smaller blocks, we embed both images
into the centers of larger, NaN-filled, square images, Aext and Bext, respectively, with an edge length
that is a power of two. For A and B of size m × n, Aext and Bext are of size 2next × 2next with
next = dlog2 (max(n,m))e, where d·e denotes the ceiling (round up to nearest integer) function. All
other pixels of Aext = {a(ext)

i,j }2
next
i,j=1 not defined by the embedding of A are missing values, so that

a(ext)
i,j =

ai−δx,j−δy if i ∈ {δx + 1, . . . , δx +m}, j ∈ {δy + 1, . . . , δy + n}

NaN otherwise
(21)

with δx =
⌊

1
2

(2next −m)
⌋

and δy =
⌊

1
2

(2next − n)
⌋
, where b·c denotes the floor (round down to nearest

integer) function. The same applies to Bext.
Beginning with the full image as a single square block, a series of increasingly smaller blocks is

determined by dividing each block at the previous level into four equal quadrants. In this way, a
2next × 2next image can be divided next times until the block resolution is equal to the image’s pixel
resolution. For the r-th resolution level, the distance of Aext and Bext is defined as

d
(r)
AGB (Aext, Bext) =

∑2r−1

j=1

∑2r−1

i=1

∣∣∣ā(r)
i,j − b̄

(r)
i,j

∣∣∣ min
(

#real(ā
(r)
i,j ),#real(b̄

(r)
i,j )
)

∑2r−1

j=1

∑2r−1

i=1 min
(

#real(ā
(r)
i,j ),#real(b̄

(r)
i,j )
) . (22)

In the above equation ā(r)
i,j and b̄(r)i,j denote the mean intensity of the block at the coordinates i, j of Aext

and Bext, respectively. The symbols #real(ā
(r)
i,j ) and #real(b̄

(r)
i,j ) denote the number of non-NaN values in



RemoteSensing 2010, 2 804

ā
(r)
i,j and b̄(r)i,j , respectively. Missing values are ignored in the calculation of the intensity mean for each

block, if a block contains only missing values, its mean intensity is defined as 0. At the lowest resolution
level (r = 1) one single block covers an entire image, at the highest level (r = next + 1) each block
contains a single pixel, so that

ā
(1)
1,1 =

1

|Areal|
∑

(k,l)∈Areal

ak,l and ā
(next+1)
i,j = a(ext)

i,j . (23)

The adapted gray block distance is then defined as a weighted sum of the distances at each
resolution level:

dAGB (A,B) = dAGB (Aext, Bext) =
next+1∑
r=1

1

wr
d

(r)
AGB (Aext, Bext) , (24)

where
1

wr
is a weighting factor that depends on the parameter w > 0.

The formation of blocks described above has the crucial disadvantage of dividing and further
subdividing the images at the same position, thus creating a strong bias. Two pixels, one in the left
half of Aext, one in the right half of Bext, will only be compared at the lowest resolution level (by means
of contributing to the block mean), even if they are neighboring pixels, like, for example, a(ext)

1
2
2next , 1

2
2next

and b(ext)
1
2
2next+1, 1

2
2next

. In contrast, a(ext)
1
2
2next , 1

2
2next

and b(ext)
1
2
2next−1, 1

2
2next

will be compared at every resolution level,
except for the last. Thus, differences in Aext and Bext may affect dAGB (Aext, Bext) differently, depending
on their location.

In order to decrease this bias, we introduce a second division into blocks for the resolution levels
r = 2, 3, . . . , next. In this alternate division, the location of blocks is moved in X and Y direction by 2r−2

(half the blocks edge size; see Figure 2). The mean of the block distances at the original division and the
alternate division is then used to compute d(r)

AGB for r = 2, 3, . . . , next in our implementation.

Figure 2. Original (blue, solid line) and alternate (red, dotted line) division of a 2next × 2next

image into blocks for resolution levels r = 2 (left image) and r = 3 (right image).

By expanding A and B the complexity of the adapted gray block distance increased to O(next(2
next)2)

which can be expressed in terms of m and n as O(log2(max(m,n)) max(m,n)2).
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4. Image Comparison Tests & Results

4.1. Test 1: Translated and Masked Features

In the first test, we explore whether the image comparison measures can detect translated and masked
features in satellite images. For this purpose we introduce 3 images: D, M1 and M2. We assume that
D is a satellite image that is compared to the model-derived images M1 and M2. In the first case,
there is a feature that is present in both D and M1, but at different locations; for example an eddy
that is offset between data and model. This translated feature is not present in M2 (see Figure 3 a,b).
We consider it desirable for a distance measure d to rate D and M1 to be closer than D and M2, i.e.,
d(D,M1) < d(D,M2), because of the common feature in D and M1 that does not appear in M2. In this
case we prefer our model to show, as opposed to not show, a feature (e.g., the eddy) that appears in the
satellite image, even if not at identical locations.

Figure 3. Examples of the manually created images used for the translated and the masked
feature tests. In each test case, the first image represents the satellite image D which is
compared to the imagesM1 (center image) andM2 (right image). D andM1 share a common
feature that does not appear in M2. The location of this feature in M1 is highlighted by a
white dotted circle in every image. In the masked feature tests (c) and (d), this location is
masked by NaN-values in D.

(a) translated feature image series 1 (b) translated feature image series 2

(c) masked feature image series 1 (d) masked feature image series 2

We use slightly modified versions of the above sets of images for the masked feature test, in which the
satellite image D contains missing values at the same location where M1 contains the feature. Figure 3
(c) and (d) show examples of D, M1 and M2 for the masked feature case. The feature is masked in M1 if
only pixels inXreal are considered in the image comparison and therefore not accessible by pixel-by-pixel
comparison measures. Yet, as both D and M1 show the feature, we consider d(D,M1) < d(D,M2) or
the equivalent d(D,M1)

d(D,M2)
< 1 a desirable characteristic of d.
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We applied the image comparison measures to the test cases presented in Figure 3. The results are
shown in Figure 4 as ratios of d(D,M1)

d(D,M2)
. For the masked feature test, Figure 4 also includes the results of

a control experiment, where the pixels with missing values in D are set to missing values in M1 and M2,
so that DNaN = M1,NaN = M2,NaN . We further added a small amount of noise to all images in Figure 3,
so that none of the distances are zero and d(D,M1)

d(D,M2)
retains a meaningful value.

Figure 4. Results of tests for the image series shown in Figure 3, expressed as ratios d(D,M1)
d(D,M2)

.
Ratios smaller than 1 are desirable

(a) translated feature image series 1 (b) translated feature image series 2

(c) masked feature image series 1 (d) masked feature image series 2

In the cases with translated features, all pixel-by-pixel measures judgeM2 to be significantly closer to
D thanM1, which is an inherent shortcoming of pixel-by-pixel comparison. For the neighborhood-based
measures the results are more diverse: AHD and Delta-g show the most desirable results and clearly rate
D andM1 closer thanD andM2, while the results of IE are similar to those of RMS. The other measures
fall in between, with d(D,M1)

d(D,M2)
close to 1.

For the cases with masked features, the pixel-by-pixel measures show the same pattern: d(D,M1)
d(D,M2)

has
the same value for the sets of images used in the test cases and their respective control experiments
(d(D,M1)
d(D,M2)

6= 1 because not the entire feature is masked), the masked feature does not have any effect.
The neighborhood-based measures account for the masked feature to some degree, except for IE. For
the masked feature image series 1 the distance of the two images is reduced significantly by the masked
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feature. For image series 2, this difference is not so obvious and the effect of the masked feature is
insignificant or masked by noise.

The performance of the pixel-by-pixel measures is a direct result of not considering neighboring
pixels. This also leads pixel-by-pixel measures to ignore the pixels in DNaN when comparing D to
M1 and M2 in the masked feature case; consequently d(D,M1)

d(D,M2)
is the same for both, test and control

experiment. All other methods compare pixels at different locations, which leads to an advantage in
this test. Not all of the measures identify D to be closer to M1, however. The individual results are
also strongly dependent on the measures’ scaling parameters, an influence which we will return to in
Section 5. The results of the masked feature test show clearly that the adapted comparison measures can
make use of pixels in DNaN ∩M1,NaN and that these pixels can change results significantly. The exception
is our implementation of IE which is not a pixel-by-pixel measure but also ignores all pixels in DNaN .

In this test we focused on the very specific scenario of a single translated/masked feature. The results
are somewhat artificial as the images have been specifically created to be nearly identical except for the
feature of interest. Nevertheless, translated and masked features can easily be caused by inconsistencies
in the model (e.g., time lags) in conjunction with large areas of missing values.

4.2. Test 2: Translation & Rotation of Images

In this test we examine the effect of translation and rotation of a base image on the comparison
measures. Stepwise translation or rotation of an image offers a simple way to create a series of similar
images. Due to the nature of satellite images (as opposed to, e.g., images of white noise) an increased
translation or rotation leads to an apparent increase in distance to the untransformed image. The image
comparison measures should reflect this increase in distance.

For this test we generated a large number of series of transformed images. Starting with a large
satellite image, each series was created by successively translating or rotating the image and then clipping
it at the same position after each transformation. The clipping was done to ensure that the series contains
no missing values that are introduced to the large image by the respective transformation. By adopting
this approach we generated 100 series of translated images and 100 series of rotated images, each series
containing between 5 and 6 images. Image sizes are constant within a series but range between 30× 30

and 50 × 50 pixels among different series. The translations are performed along the X and Y axes as
well as along their bisecting line. The translation distance between two images is 5 to 10 pixels. For
each series of rotated images, the center of rotation is roughly in the center of the clipped image and the
rotation angle between two images is 20◦. In this test the images do not contain missing values and we
do not add any noise to the images.

Given a series of increasingly translated or rotated images A1, A2, . . . , Aq (e.g., see Figure 5) we
perform two tests for each image comparison measure d:

neighbor test: A comparison measure d passes the neighbor test if for any given image in the series,
the distance to one of the neighboring images in the series is smaller than the minimum distance
to any non-neighboring image, i.e., if

min
j∈{i−1,i+1}

d(Ai, Aj) < min
j∈{1,...,i−2}∪{i+2,...,q}

d(Ai, Aj) for i = 1, 2, 3, . . . , q (25)
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monotonic test: d passes the monotonic test if, for the first image in the series, the distance to the other
images in the series is monotonically increasing, i.e., if

d(A1, A2) < d(A1, A3) < d(A1, A4) < . . . < d(A1, Aq). (26)

Figure 5. A series of 4 translated images (top row) and a series of rotated images (bottom
row) used in Test 2. Markers are inserted into the images to illustrate the direction of the
translation and the angles of the rotation, respectively.

Figure 6. Fractions of passed neighbor tests and monotonic tests for 100 series of translated
and rotated images.

The results of the two tests applied to both sets of images are shown in Figure 6. The ratio of passed
tests is high for most distance measures, especially in the rotation neighbor test scenario. Generally,
the results are better for the rotated images. This is especially obvious for AVG and NXC which
have relatively low scores for the translated images, but perform roughly twice as well in the rotation
test cases.

There is no indication that the pixel-by-pixel measures perform worse than the neighborhood-based
methods, in fact RMS and D2 are among the best performing measures in all 4 test cases. It is interesting
to note that the results of D2 are slightly better than those of the RMS. Among the neighborhood-based
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measures, AGB and IE perform well throughout all tests. The difference in parametrization among the
two Hausdorff based measures is obvious, with AHD2 performing significantly better than AHD.

4.3. Test 3: Noise Sensitivity

In real life applications we expect that the satellite images contain some noise which may affect the
image comparison. It is therefore important to test the noise sensitivity of image comparison methods.
A multitude of publications have addressed this issue for regular gray scale images e.g.,[6]. To assess
how variable levels of noise in images affect the satellite image comparison methods, we examine how
the results from the previous test change under the influence of noise.

We used the 100 series of translated satellite images from the previous test. For each series, we
determined the standard deviation σ of intensity values among all the images in the series. We then
added Gaussian noise with mean 0 and standard deviation xσ to each image (where adding the noise
created negative values these were set to 0), where x is increased from 0.2 to 1.0 in increments of 0.2.
For each noise level we performed the neighbor and monotonic test in the same manner as in the previous
Test 2.

The results show that all comparison measures are affected by increased noise (Figure 7). The
measures that employ averaging (AGB, IE and RMS) are the least sensitive to noise, with AGB
performing best in both test cases. Especially the performance of AVG and NXC drops significantly
as noise increases. D2 performed better than RMS at no noise, but drops below RMS with increasing
noise. AHD and AHD2 exhibit a similar decline in performance compared to the no-noise results.

Figure 7. Fraction of Passed Neighbor Tests and Monotonic Tests for Different Levels
of Noise.

(a) Neighbor Test

(b) Monotonic Test
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4.4. Test 4: NaN-Sensitivity

In addition to noise, missing values may also affect the performance of image comparison measures.
In this test we examine the sensitivity of the image comparison measures to the location and number of
missing values.

For this test we used two images of dimension 40 × 40 and with a translation distance of 10 pixels
from a series of translated images in Test 2. We then created 100 copies of the second image and selected
a fraction xNaN of each copy to be missing values, varying xNaN from 0.1 to 0.9. The selection was
performed in a way that creates uniformly distributed circles of missing values in the image, forming
cloud-shaped areas (to mimic regions of missing values on optical ocean imagery), see Figure 8 for
examples. Finally, we use the image comparison measures to compare the first image to all of the
NaN-covered copies of the second image, computing 100 image distances for each comparison measure.
We then record mean and standard deviation of distances (Figure 9).

Figure 8. 3 Realizations (Rows) of the Same Image Covered Randomly in Missing Values.
From Left to Right the Number of Missing Values is Increased in Each Column from 10%
to 90% in Increments of 20%.

The mean can be thought of as a measure of bias in this test: For a single realization of a randomly
NaN-covered image, we can expect that a major feature is covered resulting in an increase or decrease
of distance when compared to another image. While this makes it more likely that the distance diverts
further from the mean as the number of missing values is increased, we do not expect the mean to change
significantly with an increase in xNaN if the distance measure is unbiased. A significant change in mean
implies that the distance measure is directly affected by the number of missing values and thus biased.
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Figure 9. Mean and Standard Deviation of Image Distances for Different Levels of Missing
Values. For Each Distance Measure, the Mean Values have been Normalized, so that Their
Mean is 1.

(a) normalized mean distance (b) standard deviation of distance

Noteworthy in this case are our adaptations IE and AVG which both show a significant bias. For IE,
there is negative bias as the amount of missing values increases, lowering the mean distance. AVG, on the
other hand, shows a positive bias, while the mean in all other distance measures is affected insignificantly.

The standard deviation in this test is a measure of missing value stability (NaN-stability). A lower
standard deviation is desirable. It means that the distance between two images is less dependent on the
location of missing values. The least stable distance measures, with highest standard deviations are IE,
RMS and NXC. Measures that ignore pixels in ANaN ∩ Breal, with the exception of D2 which features
one of the highest NaN-stabilities, show the worst performance in this test. They are followed by AHD
which is significantly less NaN-stable than AHD2, illustrating the positive effect of its parametrization.

4.5. Test 5: NaN-Translation

In the previous test we assessed the sensitivity and stability of the image comparison measures when
faced with missing values. Here, we examine the effects of missing values on the measures’ ability to
correctly estimate relative distances between images.

We use again 100 series of translated images and randomly add missing values to the images, as
described for Test 4. Using the monotonic test we compare the untouched image with the altered
ones to test if the distance in the series increases. Because our previous results suggest that this test
is significantly harder to pass than the monotonic test without missing values (Test 2) or under the
influence of noise (Test 3), the image series in this test are slightly less translated (3 to 5 pixels in
between individual images).

The results of this test (Figure 10) are similar to those of previous tests: our implementations of AGB,
AHD2, RMS, D2 and IE perform well. NXC is the worst, passing less than half of the tests.
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Figure 10. Fraction of passed monotonic tests for the NaN-translation case.

4.6. Test 6: Time-Series

All of the previous tests focused on the comparison of images that were generated by translating
or rotating a base image or one of its features. In this final test we consider a numerical ocean
model-generated time series of images. A time series poses a somewhat different challenge to the series
of images generated through translation: Features appear and disappear in the center of the image (e.g.,
by upwelling) and features such as fronts and eddies not only change their location, which is the case
with translated images, but also their shape and size. This test is closer to a realistic application than the
previous ones.

We use images of model-simulated chlorophyll [taken from the model presented in 24]. Using a
model to generate test images is advantageous because there are no missing values, no noise and the
time interval between images can be selected. Also, we expect the images to exhibit similar features to
satellite images.

For this test, we use 6 series of 31 images (with a time difference of 12 days between two consecutive
images); the images are clipped and ranged in size from 40×50 pixels to 70×150 pixels among different
series (Figure 11). Since the apparent distance of two images in a time series does not necessarily grow
monotonically with time, we use a variation of the neighbor test in this scenario: We compare the
distances of an image to its two neighbors with the distances to the other images within a window of 7
images, instead of all images (as done in Test 2). Performing a neighbor test for every image series, we
obtain a ratio of passed to total tests for each series. The mean ratio and its standard deviation among
the series are displayed in Figure 12 for different noise and missing value levels, which were added as
described in Test 3 and 4, respectively.
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Figure 11. An extraction of 4 consecutive images in a time series of images generated by a
physical-biological ocean model.

Figure 12. Results of the time-series test. Bar height indicates average fraction of passed
tests for the 6 time series of images.

The best performers in the test cases without noise or missing values are AVG, D2 and AGB.
The results of AGB are only slightly affected by the addition of noise and missing values, while
the performance of D2 and especially AVG drops considerably with increasing noise. Among the
pixel-by-pixel measures, D2 achieves better results than RMS in all cases. The relatively good results
of NXC indicate that there is a high level of correlation for neighboring images in the time series. For
neighborhood-based measures, many results confirm previous observations: The parametrisation for
AHD2 performs better than the one used in AHD. IE shows good performance that is not very sensitive
to noise.
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Table 2. Qualitative performance ratings of the image comparison measures for the 6 Tests
in Section 4. The symbols indicate relative performance in the tests: + is good performance,
◦ is average performance and – is bad performance.

Test RMS NXC D2 AHD AHD2 AVG DG IE AGB

Test 1: translated & masked features – – – + + ◦ + – +
Test 2: translation & rotation + – + – + ◦ ◦ + +
Test 3: noise sensitivity + – + – ◦ – – + +
Test 4: NaN-sensitivity – – + – + +a ◦ –a +
Test 5: NaN-translation + – + – + – ◦ ◦ +
Test 6: time-series ◦ – + – ◦ ◦ – ◦ +
a The significant bias introduced through missing values is not included in the rating.

5. Discussion

For this study, we adapted 8 image comparison measures for use with satellite images. Our motivation
was to compare satellite imagery with spatial fields derived from numerical ocean models, which has
applications in model skill assessment and data assimilation. The distinguishing features of satellite
images compared to regular images are that their values are continuous non-integer values and that
pixels or portions can be missing. The examined comparison measures range from simple but widely
used pixel-by-pixel methods to more complex methods that evaluate the distance of pixels at different
locations. We compared the behavior of the comparison measures in 6 tests and assessed their response
to different levels of noise and missing values. The qualitative performances of the measures are
summarized in Table 2, and discussed in more detail below. One of our main goals was to compare
the performance of the two very commonly used distance measures root mean square error and image
correlation to lesser known alternatives.

Two measures outperformed both root mean square error and correlation throughout all of our tests.
AGB, a neighborhood-based measure, achieved the best overall test results. It is especially insensitive
to noise and missing values. The pixel-by-pixel measure D2 also achieved better results than the two
commonly used methods, but is less advantageous in cases where translated or masked features play an
important role (compare Test 1). In applications were runtime is not a primary concern, we recommend
using AGB as distance measure. If low runtime is required, we recommend D2 over RMS.

Test 1 highlights the advantages of incorporating neighboring pixels into satellite image comparison;
while the neighborhood-based methods can make use of the information in pixels that have values in
the model but missing values in the data, the pixel-by-pixel measures cannot. Despite these inherent
problems of pixel-by-pixel comparisons, the neighborhood-based measures are not always superior to
the pixel-by-pixel measures. In Test 4, D2 distinguished itself from the other pixel-by-pixel measures by
exhibiting a very high NaN-stability.

One important factor to consider is the parametrization of the image comparison measures. Every
neighborhood-based measure we tested features one parameter or more. All of them contain a scaling



RemoteSensing 2010, 2 815

parameter that weights the spatial distance of two pixels compared to their distance in intensity (the
scaling parameters are listed in Table 1). Scaling parameters have a strong effect on the distance measures
and the right choice depends on the resolution of the images that are compared. For high-resolution
images, the distance between two neighboring pixels is low and spatial distance needs to be weighted
lower in comparison to distance in intensity than for similar images with coarser resolution. A possible
explanation for the good results of AVG in Test 6 in contrast to the average results in the other tests is
that its scaling parameter matches the scale of model-generated images from Test 6 better than the scale
of the satellite images used for tests 1–5.

Beside the scaling parameters, other parameters have significant effects on the results, too. A good
example is the performance of AHD and AHD2, two parametrisations of the adapted Hausdorff distance.
AHD2 performed better than AHD in all tests, due to a change of one parameter (kmax) that controls the
adapted Hausdorff distance’s proneness to extreme values.

A larger number of parameters allows for a high level of customization but has the negative side effect
that parameters may need to be adapted for each application. Root mean square error and normalized
cross-correlation have no parameters and thus do not require the user to select a specific parametrization.
The customizability of the neighborhood-based measures varies strongly. The image Euclidean distance
has only one parameter. The Hausdorff distance is highly customizable: Dubuisson & Jain [22] present
24 variations of the Hausdorff distance, some with their own parameters. Pixel-by-pixel measures can
also have a high number of parameters, e.g. there are various flavors of entropic distances. The entropic
distance D2 used in this study is just one of 6 different entropic distances introduced in [17], each can be
customized further.

Missing values are one of the distinguishing features of satellite images. Test 4 focused directly on the
effects of the number of missing values on image distances. Bias introduced through missing values has
different effects: In model skill assessment or data assimilation, bias is not an important issue since the
number of missing values stays constant; one satellite image is compared to a number of model-derived
images, each with the same number of missing values. Bias becomes important in scenarios where one
image is compared to two or more images that have different number of missing values. NaN-stability,
on the other hand, plays a more universal role and our results indicate that even for low ratios of missing
values, the comparison measures display significantly different levels of NaN-stability. Here lies one
of the apparent weakness of the standard pixel-by-pixel measures RMS and NXC which exhibit a very
low NaN-stability.

All of our tests are based on the assumption that we can produce images that are less similar to one
another by either moving a specific feature within the image, by increasing translation or rotation of the
entire image, or by increasing the time difference of images in a time-series. This is done for a reason;
apart from time-series and simple transformations, there is no easy way to create a set of images for
which we have an objective indication of image similarity. Using any comparison measure as the basis
for determining image similarity would be circular and predetermine the outcome of the tests.

Beside test performance, ease of implementation and runtime need to be considered. The
pixel-by-pixel measures are generally very easy to implement and they are the fastest methods. Because
they compare only pixels at the same location they have a complexity O(mn). All neighborhood-based
measures have a higher complexity and, due to their more elaborate means of comparing pixels at
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different locations, are also harder to implement. The variation in runtime and ease of implementation
among them is significant. One of the fastest neighborhood-based measures we tested is AGB. It has a
complexity of roughly O(log2(max(m,n)) max(m,n)2). AVG is the only other neighborhood-based
measure with a complexity below O((mn)2), although its runtime is strongly dependent on its
parametrization. The slowest methods are AHD, IE and DG; runtime of the latter is also very dependent
on the choice of parameters. Ease of implementation is not as easy to judge objectively. We found image
Euclidean distance and adapted Hausdorff distance to be the easiest to implement while an efficient
implementation of average distance, adapted gray block distance and especially Delta-g took more effort.

6. Conclusions

This study shows that low level image comparison measures, developed for regular gray scale images,
can successfully be adapted to work with satellite images. In comparison to standard comparison
measures such as root mean square error (RMS) and cross-correlation, two of our adapted measures
show better performance throughout all of our tests. These measures are the adapted gray block distance
(AGB), which compares images at multiple scales, and the entropy based measureD2. The advantages of
these measures are especially apparent in scenarios that involve missing values, one of the distinguishing
features of satellite images. AGB also exhibits the lowest sensitivity to noise among the measures
we tested and we would therefore recommend it over RMS. While AGB requires more runtime than
pixel-by-pixel measures, it is among the fastest neighborhood-based methods we tested. In cases where
runtime or ease of implementation are the prime concerns, the pixel-by-pixel measure D2 is still a better
alternative to RMS.
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